Geostatistics

「Geostatistics」の編集履歴(バックアップ)一覧はこちら

Geostatistics」(2010/03/20 (土) 01:16:30) の最新版変更点

追加された行は緑色になります。

削除された行は赤色になります。

地球統計学 #contents * Conditional simulations ** A classification of the methods *** Quantities - Continuous variables - Categorical variables - Objects *** Basic model type - Diffusive model - Jump model - Mosaic model - Random set model ** Sequential simulation *** Outline of algorithms 1. Assign any hard data (n) to the grid 2. Define a random path visiting all nodes u in the grid 3. Loop over all nodes u_i a. Construct a conditional distribution Fz(u_i, z|(n+i-1)) = Pr(Z(u_i)<=z|(n+i-1)) b. Draw a simulated value z(u_i) from the conditional distribution Fz(u_i, z|(n+i-1)) c. Add simulated value to data-set (n+i-1) 4. End simulation *** The joint probability distribution $$ Pr\lbrace z_{M+1} \leq Z_{M+1} \leq z_{M+1} + dz_{M+1},..., z_N \leq Z_N \leq z_N + dz_N | z_1,...,z_N \rbrace$$ $$ = Pr\lbrace z_{M+1} \leq Z_{M+1} \leq z_{M+1} + dz_{M+1} | z_1,...,z_M \rbrace $$ $$\,\,\,\times Pr\lbrace z_{M+2} \leq Z_{M+2} \leq z_{M+2} + dz_{M+2} | z_1,...,z_M,z_{M+1} \rbrace $$ $$\,\,\,\,\vdots$$ $$\,\,\,\times Pr\lbrace z_N \leq Z_N \leq z_N + dz_N | z_1,...,z_M,z_{M+1},...,z_N \rbrace $$ ** Sequential Gaussian simulation *** Outline of the algorithms 1. Transform the sample data to standard normal scores 2. Assign the data (n) to the grid 3. Define a random path visiting all nodes u 4. Loop over all nodes u_i a. Construct a conditional Gaussian distribution $$G(u_i,z|(n+i-1)) = G(\frac{z-z^*_{SK}(u_i)}{\sigma_{SK}(u_i)})$$ b. Draw a simulated value z(u_i) from the conditional distribution $$G(u_i,z|(n+i-1))$$ c. Add simulated value to data-set (n+i-1) 5. End simulation 6. Transform the entire simulation back to the original data histogram *** The mean of each conditional distribution $$E[Z(u_i)|Z(u_{i-1})=z_{i-1},...,Z(u_1)=z_1] = \sum_{j=1}^{i-1}\lambda_j(u_i)z(u_j) = z_{SK}^*(u_i)$$ *** The variance of each conditional distribution $$Var[Z(u_i)|Z(u_{i-1})=z_{i-1},...,Z(u_1)=z_1] = \sigma^2_{SK}(u_i) $$ * Kriging ** Main forms of linear kriging | &bold(){Kriging Type} | &bold(){Mean} | &bold(){Minimal Prerequisite} | &bold(){Model Name} | | Simple Kriging(SK) | Constant, known | Covariance | Stationary | | Ordinary Kriging(OK) | Constant, unknown | Variogram | Intrinsic | | Universal Kriging(OK) | Varying, unknown | Variogram | UK model | ** Common parts in derivation of the Kriging equations ** Estimated value $$Z^* = \sum_{\alpha}\lambda_\alpha Z_\alpha + \lambda_0$$ - The weights $$\lambda_\alpha$$ depend on the location $$x_0$$ where the function is being estimated. - $$\lambda_\alpha$$, $$\lambda_0$$ are selected so as to minimize the error $$Z^* - Z_0$$, characterized by its expected mean square $$E(Z^* - Z_0)^2$$ | $$Z_*$$ | The prediction at the point $$x_0$$ | | $$Z_\alpha$$ | the data at the point $$\alpha$$ | | $$\lambda_\alpha$$ | weights | | $$\lambda_0$$ | a constant that depends on $$x_0$$ | ** Take the kriging variance as the mean square error Originally $$E(Z^* - Z_0)^2 = E\bigg(\sum_{\alpha}\lambda_\alpha Z_\alpha - Z_0 \bigg)^2$$ Adding the mean term $$\mu$$, $$E(Z^* - Z_0)^2 = E\bigg(\sum_{\alpha}\lambda_\alpha (Z_\alpha - \mu) - (Z_0 - \mu) \bigg)^2$$ Expand it and finally written as $$E(Z^* - Z_0)^2 = \sum_\alpha \sum_\beta \lambda_\alpha \lambda_\beta \sigma_{\alpha\beta} - 2\sum_\alpha \lambda_\alpha \sigma_{\alpha 0} + \sigma_{00}$$ b. $$E(Z^* - Z_0)^2 = Var(Z^* - Z_0) + [E(Z^* - Z_0)]^2$$ |$$\sigma_{\alpha\beta}$$ |Covariance between two sample points $$Z(x_\alpha)$$ and $$Z(x_\beta)$$ | |$$\mu$$| the mean value| |$$\sigma_{\alpha 0}$$| Covariance between one sample point and the estimated point $$x_0$$| |$$\sigma_{00}$$| Variance at the estimated point $$x_0$$| ** Simple Kriging Take the minimum of the mean square error $$ \frac{\partial}{\partial \lambda_\alpha} E(Z^* - Z_0)^2 = 2\sum_\beta \lambda_\beta \sigma_{\alpha \beta} - 2\sigma_{\alpha0} = 0$$ Therefore, Simple Kriging System is $$ \sum_\beta \lambda_\beta \sigma_{\alpha \beta} = \sigma_{\alpha 0} $$ Simple Kriging Variance $$ \sigma_{SK}^2 = E(Z^* - Z_0)^2 = \sigma_{00} - \sum_\alpha \lambda_\alpha \sigma_{\alpha 0} $$ ** Ordinary Kriging(OK) * Under the condition of second-order stationarity - means: spatially constant mean and variance - Relations of covariance, correlation and variogram $$C(0) = Cov(Z(u), Z(u+h)) = Var(Z(u))$$ $$\rho(h) = \frac{C(h)}{C(0)}$$ $$\gamma(h) = C(0) - C(h)$$ |$$C(h)$$|Covariance| |$$\rho(h)$$|Correlation| |$$\gamma(h)$$|Semivariogram| &blankimg(variogram_covariance.JPG) ** External drift kriging * Covariance 共分散 - 2つの変数がどのくらい同じように動くか $$Cov(x,y) = E[(x-\mu_x)(y-\mu_y)]$$ - corrleation coefficient $$\rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$ * Variogram バリオグラム - 空間的相関、つまりデータが距離と方向にどのような関係を持つか ** Variogram model |Spherical| $$g(h) = c (1.5\frac{h}{a} - 0.5(\frac{h}{a})^3)$$| |Exponential (GSLIB)| $$g(h) = c (1 - exp(\frac{-3h}{a_p}))$$| |Exponential (gstat)| $$g(h) = c (1 - exp(\frac{-h}{a_t}))$$| |Gaussian| $$g(h) = c (1 - exp(\frac{-3h^2}{a^2}))$$| where |h|lag distance| |a|range| |$$a_p$$|practical range equal to the distance at which 95% of the sill has been reached| |$$a_t$$|theoretical range| |c|sill| &blankimg(variogram_model.JPG) ** Covariogram $$Cov({\bf h})$$ - a function that depends only on the displacement vector h. ** Semivariogram $$\gamma({\bf h})$$ $$\gamma({\bf h}) = \frac{1}{2}Var\bigg(Z({\bf s}) - Z({\bf s}+{\bf h})\bigg)$$ |$$Z({\bf s})$$|spatial process at lcation $${\bf s}$$| |$${\bf h}$$|the displacement vector| ** Relation between Covariogram $$C({\bf h})$$ and Semivariogram $$\gamma({\bf h})$$ $$\gamma({\bf h}) = C({\bf 0}) - C({\bf h})$$ |$$C({\bf 0})$$|the variance of spatial process| ** Empirical semivariogram $$\hat\gamma({\bf h}) = \frac{1}{2|N(h)|}Var\sum_{N(h)}(Z(s_i) - Z(s_j))^2$$ * Difference between Kriging and Simulation Kriging - produces just one map of estimates which is best in a statistical sense - a global estimator, in that its estimate represents all the data within a defined area - good to show smooth variations and underlying trends Simulation - a local estimator - reproduces exactly measured data - good at showing local variability - provides any number of statistically equivalent maps * Glossary - cdf: the cumulative distribution function 累積分布関数
地球統計学 #contents * Conditional simulations ** A classification of the methods *** Quantities - Continuous variables - Categorical variables - Objects *** Basic model type - Diffusive model - Jump model - Mosaic model - Random set model ** Sequential simulation *** Outline of algorithms 1. Assign any hard data (n) to the grid 2. Define a random path visiting all nodes u in the grid 3. Loop over all nodes u_i a. Construct a conditional distribution Fz(u_i, z|(n+i-1)) = Pr(Z(u_i)<=z|(n+i-1)) b. Draw a simulated value z(u_i) from the conditional distribution Fz(u_i, z|(n+i-1)) c. Add simulated value to data-set (n+i-1) 4. End simulation *** The joint probability distribution $$ Pr\lbrace z_{M+1} \leq Z_{M+1} \leq z_{M+1} + dz_{M+1},..., z_N \leq Z_N \leq z_N + dz_N | z_1,...,z_N \rbrace$$ $$ = Pr\lbrace z_{M+1} \leq Z_{M+1} \leq z_{M+1} + dz_{M+1} | z_1,...,z_M \rbrace $$ $$\,\,\,\times Pr\lbrace z_{M+2} \leq Z_{M+2} \leq z_{M+2} + dz_{M+2} | z_1,...,z_M,z_{M+1} \rbrace $$ $$\,\,\,\,\vdots$$ $$\,\,\,\times Pr\lbrace z_N \leq Z_N \leq z_N + dz_N | z_1,...,z_M,z_{M+1},...,z_N \rbrace $$ ** Sequential Gaussian simulation *** Outline of the algorithms 1. Transform the sample data to standard normal scores 2. Assign the data (n) to the grid 3. Define a random path visiting all nodes u 4. Loop over all nodes u_i a. Construct a conditional Gaussian distribution $$G(u_i,z|(n+i-1)) = G(\frac{z-z^*_{SK}(u_i)}{\sigma_{SK}(u_i)})$$ b. Draw a simulated value z(u_i) from the conditional distribution $$G(u_i,z|(n+i-1))$$ c. Add simulated value to data-set (n+i-1) 5. End simulation 6. Transform the entire simulation back to the original data histogram *** The mean of each conditional distribution $$E[Z(u_i)|Z(u_{i-1})=z_{i-1},...,Z(u_1)=z_1] = \sum_{j=1}^{i-1}\lambda_j(u_i)z(u_j) = z_{SK}^*(u_i)$$ *** The variance of each conditional distribution $$Var[Z(u_i)|Z(u_{i-1})=z_{i-1},...,Z(u_1)=z_1] = \sigma^2_{SK}(u_i) $$ * Kriging ** Main forms of linear kriging | &bold(){Kriging Type} | &bold(){Mean} | &bold(){Minimal Prerequisite} | &bold(){Model Name} | | Simple Kriging(SK) | Constant, known | Covariance | Stationary | | Ordinary Kriging(OK) | Constant, unknown | Variogram | Intrinsic | | Universal Kriging(OK) | Varying, unknown | Variogram | UK model | ** Common parts in derivation of the Kriging equations ** Estimated value $$Z^* = \sum_{\alpha}\lambda_\alpha Z_\alpha + \lambda_0$$ - The weights $$\lambda_\alpha$$ depend on the location $$x_0$$ where the function is being estimated. - $$\lambda_\alpha$$, $$\lambda_0$$ are selected so as to minimize the error $$Z^* - Z_0$$, characterized by its expected mean square $$E(Z^* - Z_0)^2$$ | $$Z_*$$ | The prediction at the point $$x_0$$ | | $$Z_\alpha$$ | the data at the point $$\alpha$$ | | $$\lambda_\alpha$$ | weights | | $$\lambda_0$$ | a constant that depends on $$x_0$$ | ** Take the kriging variance as the mean square error Originally $$E(Z^* - Z_0)^2 = E\bigg(\sum_{\alpha}\lambda_\alpha Z_\alpha - Z_0 \bigg)^2$$ Adding the mean term $$\mu$$, $$E(Z^* - Z_0)^2 = E\bigg(\sum_{\alpha}\lambda_\alpha (Z_\alpha - \mu) - (Z_0 - \mu) \bigg)^2$$ Expand it and finally written as $$E(Z^* - Z_0)^2 = \sum_\alpha \sum_\beta \lambda_\alpha \lambda_\beta \sigma_{\alpha\beta} - 2\sum_\alpha \lambda_\alpha \sigma_{\alpha 0} + \sigma_{00}$$ b. $$E(Z^* - Z_0)^2 = Var(Z^* - Z_0) + [E(Z^* - Z_0)]^2$$ |$$\sigma_{\alpha\beta}$$ |Covariance between two sample points $$Z(x_\alpha)$$ and $$Z(x_\beta)$$ | |$$\mu$$| the mean value| |$$\sigma_{\alpha 0}$$| Covariance between one sample point and the estimated point $$x_0$$| |$$\sigma_{00}$$| Variance at the estimated point $$x_0$$| ** Simple Kriging Take the minimum of the mean square error $$ \frac{\partial}{\partial \lambda_\alpha} E(Z^* - Z_0)^2 = 2\sum_\beta \lambda_\beta \sigma_{\alpha \beta} - 2\sigma_{\alpha0} = 0$$ Therefore, Simple Kriging System is $$ \sum_\beta \lambda_\beta \sigma_{\alpha \beta} = \sigma_{\alpha 0} $$ Simple Kriging Variance $$ \sigma_{SK}^2 = E(Z^* - Z_0)^2 = \sigma_{00} - \sum_\alpha \lambda_\alpha \sigma_{\alpha 0} $$ ** Ordinary Kriging(OK) ** External Drift Kriging (KDE) * Under the condition of second-order stationarity - means: spatially constant mean and variance - Relations of covariance, correlation and variogram $$C(0) = Cov(Z(u), Z(u+h)) = Var(Z(u))$$ $$\rho(h) = \frac{C(h)}{C(0)}$$ $$\gamma(h) = C(0) - C(h)$$ |$$C(h)$$|Covariance| |$$\rho(h)$$|Correlation| |$$\gamma(h)$$|Semivariogram| &blankimg(variogram_covariance.JPG) * Covariance 共分散 - 2つの変数がどのくらい同じように動くか $$Cov(x,y) = E[(x-\mu_x)(y-\mu_y)]$$ - corrleation coefficient $$\rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$ * Variogram バリオグラム - 空間的相関、つまりデータが距離と方向にどのような関係を持つか ** Variogram model |Spherical| $$g(h) = c (1.5\frac{h}{a} - 0.5(\frac{h}{a})^3)$$| |Exponential (GSLIB)| $$g(h) = c (1 - exp(\frac{-3h}{a_p}))$$| |Exponential (gstat)| $$g(h) = c (1 - exp(\frac{-h}{a_t}))$$| |Gaussian| $$g(h) = c (1 - exp(\frac{-3h^2}{a^2}))$$| where |h|lag distance| |a|range| |$$a_p$$|practical range equal to the distance at which 95% of the sill has been reached| |$$a_t$$|theoretical range| |c|sill| &blankimg(variogram_model.JPG) ** Covariogram $$Cov({\bf h})$$ - a function that depends only on the displacement vector h. ** Semivariogram $$\gamma({\bf h})$$ $$\gamma({\bf h}) = \frac{1}{2}Var\bigg(Z({\bf s}) - Z({\bf s}+{\bf h})\bigg)$$ |$$Z({\bf s})$$|spatial process at lcation $${\bf s}$$| |$${\bf h}$$|the displacement vector| ** Relation between Covariogram $$C({\bf h})$$ and Semivariogram $$\gamma({\bf h})$$ $$\gamma({\bf h}) = C({\bf 0}) - C({\bf h})$$ |$$C({\bf 0})$$|the variance of spatial process| ** Empirical semivariogram $$\hat\gamma({\bf h}) = \frac{1}{2|N(h)|}Var\sum_{N(h)}(Z(s_i) - Z(s_j))^2$$ * Difference between Kriging and Simulation Kriging - produces just one map of estimates which is best in a statistical sense - a global estimator, in that its estimate represents all the data within a defined area - good to show smooth variations and underlying trends Simulation - a local estimator - reproduces exactly measured data - good at showing local variability - provides any number of statistically equivalent maps * Glossary - cdf: the cumulative distribution function 累積分布関数

表示オプション

横に並べて表示:
変化行の前後のみ表示:
ツールボックス

下から選んでください:

新しいページを作成する
ヘルプ / FAQ もご覧ください。